We are given the root
node of a maximum tree: a tree where every node has a value greater than any other value in its subtree.
Just as in the , the given tree was constructed from an list A
(root = Construct(A)
) recursively with the following Construct(A)
routine:
If A
is empty, return null
.
Otherwise, let A[i]
be the largest element of A
. Create a root
node with value A[i]
.
The left child of root
will be Construct([A[0], A[1], ..., A[i-1]])
The right child of root
will be Construct([A[i+1], A[i+2], ..., A[A.length - 1]])
Note that we were not given A directly, only a root node root = Construct(A)
.
Suppose B
is a copy of A
with the value val
appended to it. It is guaranteed that B
has unique values.
Return Construct(B)
.
Example 1:
Input: root = [4,1,3,null,null,2], val = 5
Output: [5,4,null,1,3,null,null,2]
Explanation: A = [1,4,2,3], B = [1,4,2,3,5]
Example 2:
Input: root = [5,2,4,null,1], val = 3
Output: [5,2,4,null,1,null,3]
Explanation: A = [2,1,5,4], B = [2,1,5,4,3]
Input: root = [5,2,3,null,1], val = 4
Output: [5,2,4,null,1,3]
Explanation: A = [2,1,5,3], B = [2,1,5,3,4]
Note:
// Recursion
TreeNode* insertIntoMaxTree(TreeNode* root, int val) { // time: O(n); space: O(n)
if (root && root->val > val) {
root->right = insertIntoMaxTree(root->right, val);
return root;
}
TreeNode* node = new TreeNode(val);
node->left = root;
return node;
}
// Recursion
TreeNode* insertIntoMaxTree(TreeNode* root, int val) { // time: O(n); space: O(n)
if (!root) {
TreeNode* node = new TreeNode(val);
return node;
}
if (root->val < val) {
TreeNode* node = new TreeNode(val);
node->left = root;
return node;
} else {
root->right = insertIntoMaxTree(root->right, val);
return root;
}
}
// Iteration
TreeNode* insertIntoMaxTree(TreeNode* root, int val) { // time: O(n); space: O(1)
TreeNode* node = new TreeNode(val), *cur = root;
if (root->val < val) {
node->left = root;
return node;
}
while (cur->right && cur->right->val > val) {
cur = cur->right;
}
node->left = cur->right;
cur->right = node;
return root;
}