285. Inorder Successor in BST
Given a binary search tree and a node in it, find the in-order successor of that node in the BST.
The successor of a node p
is the node with the smallest key greater than p.val
.
Example 1:
Input: root = [2,1,3], p = 1
Output: 2
Explanation: 1's in-order successor node is 2. Note that both p and the return value is of TreeNode type.
Example 2:
Input: root = [5,3,6,2,4,null,null,1], p = 6
Output: null
Explanation: There is no in-order successor of the current node, so the answer is null.
Note:
If the given node has no in-order successor in the tree, return
null
.It's guaranteed that the values of the tree are unique.
TreeNode* inorderSuccessor(TreeNode* root, TreeNode* p) { // time: O(n); space: O(n)
if (!root) return root;
if (root->val <= p->val) {
return inorderSuccessor(root->right, p);
} else {
TreeNode* left = inorderSuccessor(root->left, p);
return !left ? root : left;
}
}
void helper(TreeNode* root, TreeNode* p, TreeNode*& prev, TreeNode*& succ) { // time: O(n); space: O(n)
if (!root) return;
helper(root->left, p, prev, succ);
if (prev == p) succ = root;
prev = root;
helper(root->right, p, prev, succ);
}
TreeNode* inorderSuccessor(TreeNode* root, TreeNode* p) {
if (!root || !p) return root;
TreeNode* prev = nullptr, *succ = nullptr;
helper(root, p, prev, succ);
return succ;
}
TreeNode* inorderSuccessor(TreeNode* root, TreeNode* p) { // time: O(n); space: O(n)
stack<TreeNode*> st;
TreeNode* cur = root;
bool found = false;
while (cur || !st.empty()) {
while (cur) {
st.push(cur);
cur = cur->left;
}
cur = st.top(); st.pop();
if (found) return cur;
if (cur == p) found = true;
cur = cur->right;
}
return nullptr;
}
TreeNode* inorderSuccessor(TreeNode* root, TreeNode* p) { // time: O(n); space: O(1)
if (!root) return root;
TreeNode* cur = root, *successor = nullptr;
while (cur) {
if (cur->val <= p->val) {
cur = cur->right;
} else {
successor = cur;
cur = cur->left;
}
}
return successor;
}
Last updated
Was this helpful?