Given a matrix consists of 0 and 1, find the distance of the nearest 0 for each cell.
The distance between two adjacent cells is 1.
Input:
[[0,0,0],
[0,1,0],
[0,0,0]]
Output:
[[0,0,0],
[0,1,0],
[0,0,0]]
Input:
[[0,0,0],
[0,1,0],
[1,1,1]]
Output:
[[0,0,0],
[0,1,0],
[1,2,1]]
// BFS
vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) { // time: O(m * n); space: O(m * n)
int m = matrix.size(), n = matrix[0].size();
vector<vector<int> > dirs({{-1, 0}, {1, 0}, {0, -1}, {0, 1}});
queue<vector<int> > q;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == 0) q.push({i, j});
else matrix[i][j] = numeric_limits<int>::max(); // mark unvisited 1 cells with INT_MAX
}
}
while (!q.empty()) {
auto t = q.front(); q.pop();
for (const auto& dir : dirs) {
int r = t[0] + dir[0], c = t[1] + dir[1];
if (r < 0 || r >= m || c < 0 || c >= n || matrix[r][c] <= matrix[t[0]][t[1]] + 1) continue;
matrix[r][c] = matrix[t[0]][t[1]] + 1;
q.push({r, c});
}
}
return matrix;
}
// DP
vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) { // time: O(m * n); space: O(m * n)
int m = matrix.size(), n = matrix[0].size();
vector<vector<int> > res(m, vector<int> (n, numeric_limits<int>::max() - 1));
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == 0) res[i][j] = 0;
else {
if (i > 0) res[i][j] = min(res[i][j], res[i - 1][j] + 1);
if (j > 0) res[i][j] = min(res[i][j], res[i][j - 1] + 1);
}
}
}
for (int i = m - 1; i >= 0; --i) {
for (int j = n - 1; j >= 0; --j) {
if (res[i][j] != 0 && res[i][j] != 1) {
if (i < m - 1) res[i][j] = min(res[i][j], res[i + 1][j] + 1);
if (j < n - 1) res[i][j] = min(res[i][j], res[i][j + 1] + 1);
}
}
}
return res;
}