973. K Closest Points to Origin
We have a list of points
on the plane. Find the K
closest points to the origin (0, 0)
.
(Here, the distance between two points on a plane is the Euclidean distance.)
You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in.)
Example 1:
Input: points = [[1,3],[-2,2]], K = 1
Output: [[-2,2]]
Explanation:
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]].
Example 2:
Input: points = [[3,3],[5,-1],[-2,4]], K = 2
Output: [[3,3],[-2,4]]
(The answer [[-2,4],[3,3]] would also be accepted.)
Note:
1 <= K <= points.length <= 10000
-10000 < points[i][0] < 10000
-10000 < points[i][1] < 10000
// Naive sorting
vector<vector<int>> kClosest(vector<vector<int>>& points, int K) { // time: O(nlogn); space: O(K)
vector<vector<int> > res;
sort(points.begin(), points.end(), [] (const vector<int>& a, const vector<int>& b) {
return a[0] * a[0] + a[1] * a[1] < b[0] * b[0] + b[1] * b[1];
});
res = vector<vector<int> > (points.begin(), points.begin() + K);
return res;
}
// Max heap
vector<vector<int>> kClosest(vector<vector<int>>& points, int K) { // time: O(nlogK); space: O(K)
vector<vector<int> > res;
if (points.empty() || K == 0) return res;
auto comp = [] (const vector<int>& a, const vector<int>& b) {
return a[0] * a[0] + a[1] * a[1] < b[0] * b[0] + b[1] * b[1];
};
priority_queue<vector<int>, vector<vector<int> >, decltype(comp)> pq(comp);
for (const vector<int>& pt : points) {
pq.push(pt);
if (pq.size() > K) pq.pop();
}
while (!pq.empty()) {
res.push_back(pq.top());
pq.pop();
}
return res;
}
// STL nth_element
vector<vector<int>> kClosest(vector<vector<int>>& points, int K) { // time: average O(n); space: O(K)
nth_element(points.begin(), points.begin() + K, points.end(), [] (const vector<int>& a, const vector<int>& b) {
return a[0] * a[0] + a[1] * a[1] < b[0] * b[0] + b[1] * b[1];
});
return vector<vector<int> > (points.begin(), points.begin() + K);
}
// Quick select
int compare(vector<int>& a, vector<int>& b) {
return (a[0] * a[0] + a[1] * a[1]) - (b[0] * b[0] + b[1] * b[1]);
}
int partition(vector<vector<int> >& points, int left, int right) {
vector<int> pivot = points[right];
int p_idx = left;
for (int i = left; i < right; ++i) {
if (compare(points[i], pivot) <= 0) {
swap(points[i], points[p_idx++]);
}
}
swap(points[p_idx], points[right]);
return p_idx;
}
vector<vector<int>> kClosest(vector<vector<int>>& points, int K) { // time: average O(n), worst O(n^2); space: O(K)
int left = 0, right = points.size() - 1;
while (left <= right) {
int mid = partition(points, left, right);
if (mid == K) break;
if (mid < K) left = mid + 1;
else right = mid - 1;
}
return vector<vector<int> > (points.begin(), points.begin() + K);
}
Last updated
Was this helpful?