96. Unique Binary Search Trees

Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n

Example:

Input: 3
Output: 5
Explanation:
Given n = 3, there are a total of 5 unique BST's:

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

假設給定n,總共就有1~n個nodes可以當作root來recursively生成BST。假設選定一個i當作node,那left subtree就會從1到i - 1來形成,right subtree就由i + 1到n來形成。left subtree的所有情形其實就是給定i個nodes的所有情形,用dp[i]表示。right subtree的所有情形其實是n - i個nodes的所有情形,用dp[n - i]表示。所以以i為root可以生成的結果有dp[i] * dp[n - i]個。所以就loop所有可能的i,得到所有可能的left/right subtree組合。

// Dynamic programming
int numTrees(int n) { // time: O(n^2); space: O(n)
    vector<int> dp(n + 1, 0); // Catalan number
    dp[0] = 1;
    for (int i = 1; i <= n; ++i) {
        for (int j = 0; j < i; ++j) {
            dp[i] += dp[j] * dp[i - j - 1];
        }
    }
    return dp.back();
}

Last updated

Was this helpful?