You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps
Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step
// Top-Down DP with Memoization
int helper(int n, vector<int>& memo) {
if (n == 0) return 1;
if (n <= 2) return n;
if (memo[n] != -1) return memo[n];
memo[n] = helper(n - 1, memo) + helper(n - 2, memo);
return memo[n];
}
int climbStairs(int n) { // time: O(n); space: O(n)
vector<int> memo(n + 1, -1);
return helper(n, memo);
}
// Dynamic Programming
int climbStairs(int n) { // time: O(n); space: O(n)
if (n <= 1) return n;
vector<int> dp(n, 0);
dp[0] = 1;
dp[1] = 2;
for (int i = 2; i < n; ++i) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp.back();
}
// Space Optimized Dynamic Programming
int climbStairs(int n) { // time: O(n); space: O(1)
if (n <= 1) return n;
int two_step = 1, one_step = 2, res = 2;
for (int i = 2; i < n; ++i) {
res = two_step + one_step;
two_step = one_step;
one_step = res;
}
return res;
}