509. Fibonacci Number
The Fibonacci numbers, commonly denoted F(n)
form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0
and 1
. That is,
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), for N > 1.
Given N
, calculate F(N)
.
Example 1:
Input: 2
Output: 1
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input: 3
Output: 2
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input: 4
Output: 3
Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
Note:
0 ≤ N
≤ 30.
// Top-Down Dynamic Programming with Memoization
int helper(int N, vector<int>& memo) { // time: O(N); space: O(N)
if (N < 2) return N;
if (memo[N] != -1) return memo[N];
memo[N] = helper(N - 1, memo) + helper(N - 2, memo);
return memo[N];
}
int fib(int N) {
vector<int> memo(N + 1, -1);
return helper(N, memo);
}
// Bottom-Up Dynamic Programming
int fib(int N) { // time: O(n); space: O(n)
if (N == 0) return 0;
vector<int> F(N + 1, 0);
F[1] = 1;
for (int i = 2; i <= N; ++i) {
F[i] = F[i - 2] + F[i - 1];
}
return F.back();
}
// Space Optimized Bottom-Up Dynamic Programming
int fib(int N) { // time: O(n); space: O(1)
if (N == 0) return 0;
int a = 0, b = 1;
for (int i = 2; i <= N; ++i) {
int c = a + b;
a = b;
b = c;
}
return b;
}
Last updated
Was this helpful?