160. Intersection of Two Linked Lists

Write a program to find the node at which the intersection of two singly linked lists begins.

For example, the following two linked lists:

begin to intersect at node c1.

Example 1:

Input: intersectVal = 8, listA = [4,1,8,4,5], listB = [5,0,1,8,4,5], skipA = 2, skipB = 3
Output: Reference of the node with value = 8
Input Explanation: The intersected node's value is 8 (note that this must not be 0 if the two lists intersect). From the head of A, it reads as [4,1,8,4,5]. From the head of B, it reads as [5,0,1,8,4,5]. There are 2 nodes before the intersected node in A; There are 3 nodes before the intersected node in B.

Example 2:

Input: intersectVal = 2, listA = [0,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1
Output: Reference of the node with value = 2
Input Explanation: The intersected node's value is 2 (note that this must not be 0 if the two lists intersect). From the head of A, it reads as [0,9,1,2,4]. From the head of B, it reads as [3,2,4]. There are 3 nodes before the intersected node in A; There are 1 node before the intersected node in B.

Example 3:

Input: intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2
Output: null
Input Explanation: From the head of A, it reads as [2,6,4]. From the head of B, it reads as [1,5]. Since the two lists do not intersect, intersectVal must be 0, while skipA and skipB can be arbitrary values.
Explanation: The two lists do not intersect, so return null.

Notes:

  • If the two linked lists have no intersection at all, return null.

  • The linked lists must retain their original structure after the function returns.

  • You may assume there are no cycles anywhere in the entire linked structure.

  • Your code should preferably run in O(n) time and use only O(1) memory.

ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) { // time: O(m + n); space: O(1)
    if (!headA || !headB) return nullptr;
    ListNode *pA = headA, *pB = headB;
    while (pA != pB) {
        pA = pA ? pA->next : headB;
        pB = pB ? pB->next : headA;
    }
    return pA;
}

Last updated

Was this helpful?