142. Linked List Cycle II

Given a linked list, return the node where the cycle begins. If there is no cycle, return null.

To represent a cycle in the given linked list, we use an integer pos which represents the position (0-indexed) in the linked list where tail connects to. If pos is -1, then there is no cycle in the linked list.

Note: Do not modify the linked list.

Example 1:

Input: head = [3,2,0,-4], pos = 1
Output: tail connects to node index 1
Explanation: There is a cycle in the linked list, where tail connects to the second node.

Example 2:

Input: head = [1,2], pos = 0
Output: tail connects to node index 0
Explanation: There is a cycle in the linked list, where tail connects to the first node.

Example 3:

Input: head = [1], pos = -1
Output: no cycle
Explanation: There is no cycle in the linked list.

Follow up: Can you solve it without using extra space?

// Slow and Fast Pointers
ListNode *detectCycle(ListNode *head) { // time: O(n); space: O(1)
    ListNode *slow = head, *fast = head;
    while (fast && fast->next) {
        slow = slow->next;
        fast = fast->next->next;
        if (slow == fast) break;
    }
    if (!fast || !fast->next) return nullptr;
    slow = head;
    while (slow != fast) {
        slow = slow->next;
        fast = fast->next;
    }
    return slow;
}

Last updated

Was this helpful?