350. Intersection of Two Arrays II
Given two arrays, write a function to compute their intersection.
Example 1:
Input: nums1 = [1,2,2,1], nums2 = [2,2]
Output: [2,2]
Example 2:
Input: nums1 = [4,9,5], nums2 = [9,4,9,8,4]
Output: [4,9]
Note:
Each element in the result should appear as many times as it shows in both arrays.
The result can be in any order.
Follow up:
What if the given array is already sorted? How would you optimize your algorithm?
What if nums1's size is small compared to nums2's size? Which algorithm is better?
What if elements of nums2 are stored on disk, and the memory is limited such that you cannot load all elements into the memory at once?
// Hashmap
vector<int> intersect(vector<int>& nums1, vector<int>& nums2) { // time: O(m + n); space: O(m)
vector<int> res;
unordered_map<int, int> mp;
for (int num : nums2) ++mp[num];
for (int num : nums1) {
if (mp[num]-- > 0) res.push_back(num);
}
return res;
}
// STL Sorting + Two Pointers
vector<int> intersect(vector<int>& nums1, vector<int>& nums2) { // time: O(mlogm + nlogn); space: O(min(m, n))
sort(nums1.begin(), nums1.end());
sort(nums2.begin(), nums2.end());
int i = 0, j = 0;
vector<int> res;
while (i < nums1.size() && j < nums2.size()) {
if (nums1[i] == nums2[j]) {
res.push_back(nums1[i]);
++i, ++j;
} else if (nums1[i] > nums2[j]) {
++j;
} else {
++i;
}
}
return res;
}
// Binary Search (Lower bound)
int binarySearch(vector<int>& nums, int target) {
int left = 0, right = nums.size();
while (left < right) {
int mid = left + (right - left) / 2;
if (nums[mid] < target) left = mid + 1;
else right = mid;
}
return left;
}
vector<int> intersect(vector<int>& nums1, vector<int>& nums2) { // time: O(mlogm + nlogn + mlogn); space: O(min(m, n))
sort(nums1.begin(), nums1.end());
sort(nums2.begin(), nums2.end());
int i = 0, j = 0;
vector<int> res;
while (i < nums1.size()) {
int index = binarySearch(nums2, nums1[i]);
// int index = lower_bound(nums2.begin(), nums2.end(), nums1[i]) - nums2.begin();
int cnt2 = 0;
while (index < nums2.size() && nums2[index] == nums1[i]) {
++cnt2;
++index;
}
int cnt1 = 0;
while (j < nums1.size() && nums1[i] == nums1[j]) {
++cnt1;
++j;
}
res.insert(res.end(), min(cnt1, cnt2), nums1[i]);
i = j;
}
return res;
}
Last updated
Was this helpful?