315. Count of Smaller Numbers After Self
You are given an integer array nums and you have to return a new counts array. The counts array has the property where counts[i]
is the number of smaller elements to the right of nums[i]
.
Example:
Input: [5,2,6,1]
Output: [2,1,1,0]
Explanation:
To the right of 5 there are 2 smaller elements (2 and 1).
To the right of 2 there is only 1 smaller element (1).
To the right of 6 there is 1 smaller element (1).
To the right of 1 there is 0 smaller element.
// Binary Search
vector<int> countSmaller(vector<int>& nums) { // time: O(nlogn); space: O(n)
// tmp array records the sorted elements to the right for the current number
vector<int> tmp, res(nums.size());
// Scan from the tail of the input array
for (int i = nums.size() - 1; i >= 0; --i) {
int left = 0, right = tmp.size();
while (left < right) {
int mid = left + (right - left) / 2;
if (tmp[mid] >= nums[i]) right = mid;
else left = mid + 1;
}
res[i] = left;
tmp.insert(tmp.begin() + left, nums[i]);
}
return res;
}
// STL
vector<int> countSmaller(vector<int>& nums) { // time: O(nlogn); space: O(n)
// tmp array records the sorted elements to the right for the current number
vector<int> tmp, res(nums.size());
// Scan from the tail of the input array
for (int i = nums.size() - 1; i >= 0; --i) {
int d = distance(tmp.begin(), lower_bound(tmp.begin(), tmp.end(), nums[i]));
res[i] = d;
tmp.insert(tmp.begin() + d, nums[i]);
}
return res;
}
// Build a binary search tree with an additional variable
struct Node {
int val, smaller;
Node *left, *right;
Node(int v, int s = 0) : val(v), smaller(s), left(nullptr), right(nullptr) {}
};
int insert(Node*& root, int value) {
if (!root) {
root = new Node(value);
return 0;
} else if (root->val > value) {
++root->smaller;
return insert(root->left, value);
} else { // value >= root->val
return insert(root->right, value) + root->smaller + (value > root->val ? 1 : 0);
}
}
vector<int> countSmaller(vector<int>& nums) { // time: O(nlogn); space: O(n)
vector<int> res(nums.size(), 0);
Node* root = nullptr;
for (int i = nums.size() - 1; i >= 0; --i) {
res[i] = insert(root, nums[i]);
}
return res;
}
Last updated
Was this helpful?