There is an m by n grid with a ball. Given the start coordinate (i,j) of the ball, you can move the ball to adjacent cell or cross the grid boundary in four directions (up, down, left, right). However, you can at most move N times. Find out the number of paths to move the ball out of grid boundary. The answer may be very large, return it after mod 109 + 7.
Example 1:
Input: m = 2, n = 2, N = 2, i = 0, j = 0
Output: 6
Explanation:
Example 2:
Input: m = 1, n = 3, N = 3, i = 0, j = 1
Output: 12
Explanation:
Note:
Once you move the ball out of boundary, you cannot move it back.
The length and height of the grid is in range [1,50].
// Bottom-Up Dynamic Programming
int findPaths(int m, int n, int N, int i, int j) { // time: O(N * m * n); space: O(m * n)
// dp[k][i][j] means the total number of ways to go beyond boundary starting from (i, j) after k steps
// dp[k][i][j] = the total ways to go beyond the boundary from the four neighboring locations of (i, j) with k-1 steps
vector<vector<vector<int> > > dp(N + 1, vector<vector<int> > (m, vector<int>(n, 0)));
for (int k = 1; k <= N; ++k) {
for (int x = 0; x < m; ++x) {
for (int y = 0; y < n; ++y) {
long long up = (x == 0) ? 1 : dp[k - 1][x - 1][y];
long long down = (x == m - 1) ? 1 : dp[k - 1][x + 1][y];
long long left = (y == 0) ? 1 : dp[k - 1][x][y - 1];
long long right = (y == n - 1) ? 1 : dp[k - 1][x][y + 1];
dp[k][x][y] = (up + down + left + right) % 1000000007;
}
}
}
return dp[N][i][j];
}
// Similar-BFS DP
int findPaths(int m, int n, int N, int i, int j) { // time: O(N * m * n); space: O(m * n)
int res = 0;
vector<vector<int> > dp(m, vector<int>(n, 0));
dp[i][j] = 1;
vector<vector<int> > dirs({{-1, 0}, {1, 0}, {0, -1}, {0, 1}});
for (int k = 0; k < N; ++k) {
vector<vector<int>> t(m, vector<int>(n, 0));
for (int r = 0; r < m; ++r) {
for (int c = 0; c < n; ++c) {
for (vector<int>& dir : dirs) {
int x = r + dir[0], y = c + dir[1];
if (x < 0 || x >= m || y < 0 || y >= n) {
res = (res + dp[r][c]) % 1000000007;
} else {
t[x][y] = (t[x][y] + dp[r][c]) % 1000000007;
}
}
}
}
dp = t;
}
return res;
}