377. Combination Sum IV

Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.

Example:

nums = [1, 2, 3]
target = 4

The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)

Note that different sequences are counted as different combinations.

Therefore the output is 7.

Follow up: What if negative numbers are allowed in the given array? How does it change the problem? What limitation we need to add to the question to allow negative numbers?

circle-info

如果given array有正有負的數字,那麼答案會變得無限多種組合。譬如given array = [-1, 0, 1],然後target是0,這樣[0], [1, -1], [1, -1, 1, -1]都符合,長度可以無限增加只要正負數都一直放入組合裡。

int combinationSum4(vector<int>& nums, int target) { // time: O(n * target); space: O(target)
    if (target == 0) return 1;
    sort(nums.begin(), nums.end());
    vector<double> dp(target + 1, 0);
    dp[0] = 1;
    int n = nums.size();
    for (int i = 1; i <= target; ++i) {
        for (int j = 0; j < n; ++j) {
            if (nums[j] > i) break;
            dp[i] += dp[i - nums[j]];
        }
    }
    return dp.back();
}

Last updated