221. Maximal Square
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing only 1's and return its area.
Example:
Input:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Output: 4
// 2D array DP
int maximalSquare(vector<vector<char>>& matrix) { // time: O(m * n); space: O(m * n)
if (matrix.empty() || matrix[0].empty()) return 0;
int m = matrix.size(), n = matrix[0].size();
int max_size = 0;
vector<vector<int> > dp(m, vector<int>(n, 0));
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (i == 0 || j == 0 || matrix[i][j] == '0')
dp[i][j] = matrix[i][j] - '0';
else
dp[i][j] = min({dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]}) + 1;
max_size = max(max_size, dp[i][j]);
}
}
return max_size * max_size;
}
// 1D array DP
int maximalSquare(vector<vector<char>>& matrix) { // time: O(m * n); space: O(n)
if (matrix.empty() || matrix[0].empty()) return 0;
int m = matrix.size(), n = matrix[0].size();
int max_size = 0;
vector<int> dp(n, 0);
int upper_left = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
int upper = dp[j];
if (i == 0 || j == 0 || matrix[i][j] == '0') {
dp[j] = matrix[i][j] - '0';
} else {
dp[j] = min({upper_left, dp[j - 1], dp[j]}) + 1;
}
max_size = max(max_size, dp[j]);
upper_left = upper;
}
}
return max_size * max_size;
}
Last updated
Was this helpful?