Given a non-empty array of non-negative integers nums, the degree of this array is defined as the maximum frequency of any one of its elements.
Your task is to find the smallest possible length of a (contiguous) subarray of nums, that has the same degree as nums.
Example 1:
Input: [1, 2, 2, 3, 1]
Output: 2
Explanation:
The input array has a degree of 2 because both elements 1 and 2 appear twice.
Of the subarrays that have the same degree:
[1, 2, 2, 3, 1], [1, 2, 2, 3], [2, 2, 3, 1], [1, 2, 2], [2, 2, 3], [2, 2]
The shortest length is 2. So return 2.
Example 2:
Input: [1,2,2,3,1,4,2]
Output: 6
Note:
nums.length will be between 1 and 50,000.
nums[i] will be an integer between 0 and 49,999.
用兩個hashmap分別紀錄每個數字對應到的次數還有第一次出現的位置。
// One Pass with Two Hashmaps
int findShortestSubArray(vector<int>& nums) { // time: O(n); space: O(n)
unordered_map<int, int> counter, first;
int degree = 0, len = INT_MAX;
for (int i = 0; i < (int)nums.size(); ++i) {
if (!first.count(nums[i])) first[nums[i]] = i;
if (++counter[nums[i]] > degree) {
degree = counter[nums[i]];
len = i - first[nums[i]] + 1;
} else if (counter[nums[i]] == degree) {
len = min(len, i - first[nums[i]] + 1);
}
}
return len;
}
// Two Pass with One Hashmap
int findShortestSubArray(vector<int>& nums) { // time: O(n); space: O(n)
unordered_map<int, vector<int> > mp; // num in the array -> <times, first idx, last idx>
for (int i = 0; i < (int)nums.size(); ++i) {
if (!mp.count(nums[i])) {
mp[nums[i]] = {1, i, i};
} else {
++mp[nums[i]][0];
mp[nums[i]][2] = i;
}
}
int degree = INT_MIN, res = INT_MAX;
for (auto& e : mp) {
vector<int> v = e.second;
if (v[0] > degree) {
degree = v[0];
res = v[2] - v[1] + 1;
} else if (v[0] == degree) {
res = min(res, v[2] - v[1] + 1);
}
}
return res;
}