104. Maximum Depth of Binary Tree
Given a binary tree, find its maximum depth.
The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.
Note: A leaf is a node with no children.
Example:
Given binary tree [3,9,20,null,null,15,7]
,
3
/ \
9 20
/ \
15 7
return its depth = 3.
// Recursion
int maxDepth(TreeNode* root) { // time: O(n); space: O(n)
if (!root) return 0;
return max(maxDepth(root->left), maxDepth(root->right)) + 1;
}
// Recursion
int maxDepth(TreeNode* root) { // time: O(n); space: O(n)
int res = -1, cur = 0;
helper(root, cur, res);
return res == -1 ? 0 : res;
}
void helper(TreeNode* root, int cur, int& res) {
if (!root) return;
++cur;
if (!root->left && !root->right) {
// cout << "root node: " << root->val << endl;
// cout << "res: " << res << ", cur: " << cur << endl;
res = max(res, cur);
// cout << "after update, res: " << res << endl;
}
helper(root->left, cur, res);
helper(root->right, cur, res);
}
// Iteration
int maxDepth(TreeNode* root) { // time: O(n); space: O(n)
if (!root) return 0;
queue<TreeNode*> q;
q.push(root);
int res = 0;
while (!q.empty()) {
++res;
int n = q.size();
for (int i = 0; i < n; ++i) {
TreeNode* cur = q.front(); q.pop();
if (cur->left) q.push(cur->left);
if (cur->right) q.push(cur->right);
}
}
return res;
}
Previous103. Binary Tree Zigzag Level Order TraversalNext105. Construct Binary Tree from Preorder and Inorder Traversal
Last updated
Was this helpful?