951. Flip Equivalent Binary Trees
For a binary tree T, we can define a flip operation as follows: choose any node, and swap the left and right child subtrees.
A binary tree X is flip equivalent to a binary tree Y if and only if we can make X equal to Y after some number of flip operations.
Write a function that determines whether two binary trees are flip equivalent. The trees are given by root nodes root1 and root2.
Example 1:
Input: root1 = [1,2,3,4,5,6,null,null,null,7,8], root2 = [1,3,2,null,6,4,5,null,null,null,null,8,7]
Output: true
Explanation: We flipped at nodes with values 1, 3, and 5.
Note:
Each tree will have at most
100nodes.Each value in each tree will be a unique integer in the range
[0, 99].
// Recursion
bool flipEquiv(TreeNode* root1, TreeNode* root2) { // time: O(N^2); space: O(height of tree)
if (!root1 || !root2) return root1 == root2;
if (root1->val != root2->val) return false;
return (flipEquiv(root1->left, root2->left) && flipEquiv(root1->right, root2->right) ) ||
(flipEquiv(root1->left, root2->right) && flipEquiv(root1->right, root2->left) );
}Last updated
Was this helpful?