951. Flip Equivalent Binary Trees

For a binary tree T, we can define a flip operation as follows: choose any node, and swap the left and right child subtrees.

A binary tree X is flip equivalent to a binary tree Y if and only if we can make X equal to Y after some number of flip operations.

Write a function that determines whether two binary trees are flip equivalent. The trees are given by root nodes root1 and root2.

Example 1:

Input: root1 = [1,2,3,4,5,6,null,null,null,7,8], root2 = [1,3,2,null,6,4,5,null,null,null,null,8,7]
Output: true
Explanation: We flipped at nodes with values 1, 3, and 5.

Note:

  1. Each tree will have at most 100 nodes.

  2. Each value in each tree will be a unique integer in the range [0, 99].

// Recursion
bool flipEquiv(TreeNode* root1, TreeNode* root2) { // time: O(N^2); space: O(height of tree)
    if (!root1 || !root2) return root1 == root2;
    if (root1->val != root2->val) return false;
    return (flipEquiv(root1->left, root2->left) && flipEquiv(root1->right, root2->right) ) || 
         (flipEquiv(root1->left, root2->right) && flipEquiv(root1->right, root2->left) );
}

Last updated

Was this helpful?