Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree [1,2,2,3,4,4,3]
is symmetric:
1
/ \
2 2
/ \ / \
3 4 4 3
But the following [1,2,2,null,3,null,3]
is not:
Note:
Bonus points if you could solve it both recursively and iteratively.
// Recursion
bool isSymmetric(TreeNode* root) { // time: O(n); space: O(n)
if (!root) return true;
return helper(root->left, root->right);
}
bool helper(TreeNode* left, TreeNode* right) {
if (!left || !right) return left == right;
if (left->val != right->val) return false;
return helper(left->left, right->right) && helper(left->right, right->left);
}
// Level Order Traversal Iteration
bool isSymmetric(TreeNode* root) { // time: O(n); space: O(n)
if (!root) return true;
queue<TreeNode*> q1, q2;
TreeNode* left = root->left, *right = root->right;
q1.push(left);
q2.push(right);
while (!q1.empty() && !q2.empty()) {
left = q1.front(); q1.pop();
right = q2.front(); q2.pop();
if (!left && !right) continue;
if (!left || !right) return false;
if (left->val != right->val) return false;
q1.push(left->left);
q1.push(left->right);
q2.push(right->right);
q2.push(right->left);
}
return true;
}