You have some sticks with positive integer lengths.
You can connect any two sticks of lengths X and Y into one stick by paying a cost of X + Y. You perform this action until there is one stick remaining.
Return the minimum cost of connecting all the given sticks into one stick in this way.
Example 1:
Input: sticks = [2,4,3]
Output: 14
Example 2:
Input: sticks = [1,8,3,5]
Output: 30
Constraints:
1 <= sticks.length <= 10^4
1 <= sticks[i] <= 10^4
// Priority_Queue (Min heap)
int connectSticks(vector<int>& sticks) { // time: O(log(n!)); space: O(n)
priority_queue<int, vector<int>, greater<int> > pq(sticks.begin(), sticks.end());
int res = 0;
while (pq.size() > 1) {
int a = pq.top(); pq.pop();
int b = pq.top(); pq.pop();
pq.push(a + b);
res += (a + b);
}
return res;
}
// Greedy Method
// InputSet: [right, numSticks)
// ResultSet: [left, numResults)
bool getMin(vector<int>& sticks, int& num, int& left, int& right, int numSticks, int numResults) {
bool f = right < numSticks, s = left < numResults;
if (f && s) num = (sticks[left] <= sticks[right]) ? sticks[left++] : sticks[right++];
else if (f) num = sticks[right++];
else if (s) num = sticks[left++];
return f || s;
}
int connectSticks(vector<int>& sticks) { // time: O(nlogn); space: O(n)
int numSticks = sticks.size(), numResults = 0, left = 0, right = 0;
sort(sticks.begin(), sticks.end());
int res = 0, min1 = 0, min2 = 0;
while (getMin(sticks, min1, left, right, numSticks, numResults) &&
getMin(sticks, min2, left, right, numSticks, numResults)) {
res += sticks[numResults++] = min1 + min2;
}
return res;
}