312. Burst Balloons
Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by array nums. You are asked to burst all the balloons. If the you burst balloon i you will get nums[left] * nums[i] * nums[right] coins. Here left and rightare adjacent indices of i. After the burst, the left and right then becomes adjacent.
Find the maximum coins you can collect by bursting the balloons wisely.
Note:
You may imagine
nums[-1] = nums[n] = 1. They are not real therefore you can not burst them.0 ≤
n≤ 500, 0 ≤nums[i]≤ 100
Example:
Input: [3,1,5,8]
Output: 167
Explanation: nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167// Top-Down Recursive DP with Memoization
int helper(vector<int>& nums, vector<vector<int> >& memo, int i, int j) {
if (i > j) return 0;
if (memo[i][j] > 0) return memo[i][j];
int res = 0;
for (int k = i; k <= j; ++k) {
res = max(res, nums[i - 1] * nums[k] * nums[j + 1] + helper(nums, memo, i, k - 1) + helper(nums, memo, k + 1, j));
}
return memo[i][j] = res;
}
int maxCoins(vector<int>& nums) { // time: O(n^3); space: O(n^2)
int n = nums.size();
nums.insert(nums.begin(), 1);
nums.push_back(1);
vector<vector<int> > memo(n + 2, vector<int>(n + 2, 0));
return helper(nums, memo, 1, n);
}// Bottom-Up DP
int maxCoins(vector<int>& nums) { // time: O(n^3); space: O(n^2)
int n = nums.size();
nums.insert(nums.begin(), 1);
nums.push_back(1);
vector<vector<int> > dp(n + 2, vector<int>(n + 2, 0));
for (int len = 1; len <= n; ++len) {
for (int i = 1; i <= n - len + 1; ++i) {
int j = i + len - 1;
for (int k = i; k <= j; ++k) {
dp[i][j] = max(dp[i][j], nums[i - 1] * nums[k] * nums[j + 1] + dp[i][k - 1] + dp[k + 1][j]);
}
}
}
return dp[1][n];
}Last updated
Was this helpful?