978. Longest Turbulent Subarray
A subarray A[i], A[i+1], ..., A[j]
of A
is said to be turbulent if and only if:
For
i <= k < j
,A[k] > A[k+1]
whenk
is odd, andA[k] < A[k+1]
whenk
is even;OR, for
i <= k < j
,A[k] > A[k+1]
whenk
is even, andA[k] < A[k+1]
whenk
is odd.
That is, the subarray is turbulent if the comparison sign flips between each adjacent pair of elements in the subarray.
Return the length of a maximum size turbulent subarray of A.
Example 1:
Input: [9,4,2,10,7,8,8,1,9]
Output: 5
Explanation: (A[1] > A[2] < A[3] > A[4] < A[5])
Example 2:
Input: [4,8,12,16]
Output: 2
Example 3:
Input: [100]
Output: 1
Note:
1 <= A.length <= 40000
0 <= A[i] <= 10^9
// Dynamic Programming
int maxTurbulenceSize(vector<int>& A) { // time: O(n); space: O(n)
if (A.empty()) return 0;
int n = A.size(), res = 1;
vector<int> inc(n, 1), dec(n, 1);
for (int i = 1; i < n; ++i) {
if (A[i] > A[i - 1]) {
inc[i] = dec[i - 1] + 1;
} else if (A[i] < A[i - 1]) {
dec[i] = inc[i - 1] + 1;
}
res = max({res, inc[i], dec[i]});
}
return res;
}
// Dynamic Programming with Optimized Space
int maxTurbulenceSize(vector<int>& A) { // time: O(n); space: O(1)
if (A.empty()) return 0;
// inc: max len with last two increasing elements
// dec: max len with last two decreasing elements
int res = 1, inc = 1, dec = 1, n = A.size();
for (int i = 1; i < n; ++i) {
if (A[i] > A[i - 1]) {
inc = dec + 1;
dec = 1;
} else if (A[i] < A[i - 1]) {
dec = inc + 1;
inc = 1;
} else {
inc = 1;
dec = 1;
}
res = max({res, inc, dec});
}
return res;
}
Last updated
Was this helpful?