494. Target Sum
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols +
and -
. For each integer, you should choose one from +
and -
as its new symbol.
Find out how many ways to assign symbols to make sum of integers equal to target S.
Example 1:
Input: nums is [1, 1, 1, 1, 1], S is 3.
Output: 5
Explanation:
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3
There are 5 ways to assign symbols to make the sum of nums be target 3.
Note:
The length of the given array is positive and will not exceed 20.
The sum of elements in the given array will not exceed 1000.
Your output answer is guaranteed to be fitted in a 32-bit integer.
// Top-Down DP with Memoization
int helper(const vector<int>& nums, int i, int sum, int S, unordered_map<string, int>& memo) {
string keyStr = to_string(i) + "_" + to_string(sum);
if (memo.count(keyStr)) return memo[keyStr];
if (i == nums.size()) {
return sum == S ? 1 : 0;
}
int num = nums[i];
int add = helper(nums, i + 1, sum + num, S, memo);
int minus = helper(nums, i + 1, sum - num, S, memo);
int res = add + minus;
return memo[keyStr] = res;
}
int findTargetSumWays(vector<int>& nums, int S) {
unordered_map<string, int> memo;
return helper(nums, 0, 0, S, memo);
}
// Bottom-Up 2-D DP
int subsetSum(const vector<int>& nums, int target) {
int n = nums.size();
vector<vector<int> > dp(n + 1, vector<int> (target + 1, 0));
dp[0][0] = 1;
for (int i = 1; i <= n; ++i) {
for (int j = 0; j <= target; ++j) {
if (j >= nums[i - 1]) {
dp[i][j] = dp[i - 1][j] + dp[i - 1][j - nums[i - 1]];
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp.back().back();
}
int findTargetSumWays(vector<int>& nums, int S) { // time: O(n * S); space: O(n * S)
int sum = accumulate(nums.begin(), nums.end(), 0);
return (sum < S || (sum + S) & 0x1) ? 0 : subsetSum(nums, (sum + S) >> 1);
}
// Bottom-Up 1-D DP
int subsetSum(const vector<int>& nums, int target) {
int n = nums.size();
vector<int> dp(target + 1, 0);
dp[0] = 1;
for (int i = 0; i < nums.size(); ++i) {
for (int j = target; j >= nums[i]; --j) {
dp[j] += dp[j - nums[i]];
}
}
return dp.back();
}
int findTargetSumWays(vector<int>& nums, int S) { // time: O(n * S); space: O(S)
int sum = accumulate(nums.begin(), nums.end(), 0);
return (sum < S || (sum + S) & 0x1) ? 0 : subsetSum(nums, (sum + S) >> 1);
}
// Dynamic Programming
int findTargetSumWays(vector<int>& nums, int S) { // time: O(n * S); space: O(n * S)
int sum = accumulate(nums.begin(), nums.end(), 0);
if (S > sum || S < -sum) return 0;
int n = nums.size(), leftBound = 0, rightBound = 2 * sum;
vector<vector<int> > dp(n + 1, vector<int> (2 * sum + 1, 0));
dp[0][sum] = 1; // -sum ~ sum => 0 ~ 2*sum
for (int i = 1; i <= n; ++i) {
for (int j = leftBound; j <= rightBound; ++j) {
if (j + nums[i - 1] <= rightBound)
dp[i][j] += dp[i - 1][j + nums[i - 1]];
if (j - nums[i - 1] >= leftBound)
dp[i][j] += dp[i - 1][j - nums[i - 1]];
}
}
return dp[n][sum + S];
}
// Space Optimized 1-D Dynamic Programming
int findTargetSumWays(vector<int>& nums, int S) { // time: O(n * S); space: O(S)
int sum = accumulate(nums.begin(), nums.end(), 0);
if (S > sum || S < -sum) return 0;
int n = nums.size();
vector<int> dp(2 * sum + 1, 0);
dp[sum] = 1; // -sum ~ sum => 0 ~ 2*sum
for (int i = 0; i < n; ++i) {
vector<int> tmp(2 * sum + 1, 0);
for (int j = 0; j <= 2 * sum; ++j) {
if (dp[j] != 0) {
tmp[j + nums[i]] += dp[j];
tmp[j - nums[i]] += dp[j];
}
}
dp = tmp;
}
return dp[sum + S];
}
Last updated
Was this helpful?