Given an array nums of n integers and an integer target, are there elements a, b, c, and d in nums such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
The solution set must not contain duplicate quadruplets.
Example:
Given array nums = [1, 0, -1, 0, -2, 2], and target = 0.
A solution set is:
[
[-1, 0, 0, 1],
[-2, -1, 1, 2],
[-2, 0, 0, 2]
]
vector<vector<int>> fourSum(vector<int>& nums, int target) { // time: O(n^3); space: O(C(n, 4))
vector<vector<int> > res;
sort(nums.begin(), nums.end());
int n = nums.size();
for (int i = 0; i < n - 3; ++i) {
if (nums[i] + nums[i + 1] + nums[i + 2] + nums[i + 3] > target) break;
if ((i > 0 && nums[i] == nums[i - 1]) || (nums[i] + nums[n - 3] + nums[n - 2] + nums[n - 1] < target)) continue;
for (int j = i + 1; j < n - 2; ++j) {
if (nums[i] + nums[j] + nums[j + 1] + nums[j + 2] > target) break;
if ((j > i + 1 && nums[j] == nums[j - 1]) || (nums[i] + nums[j] + nums[n - 2] + nums[n - 1] < target)) continue;
int k = j + 1, l = n - 1;
while (k < l) {
int sum = nums[i] + nums[j] + nums[k] + nums[l];
if (sum == target) {
res.push_back(vector<int>({nums[i], nums[j], nums[k], nums[l]}));
while (k < l && nums[k] == nums[k + 1]) ++k;
while (k < l - 1 && nums[l] == nums[l - 1]) --l;
++k, --l;
} else if (sum < target) {
while (k + 1 < l && nums[k] == nums[k + 1]) ++k;
++k;
} else {
while (k < l - 1 && nums[l] == nums[l - 1]) --l;
--l;
}
}
}
}
return res;
}