787. Cheapest Flights Within K Stops
There are n cities connected by m flights. Each fight starts from city u and arrives at v with a price w.
Now given all the cities and flights, together with starting city src and the destination dst, your task is to find the cheapest price from src to dst with up to k stops. If there is no such route, output -1.
Example 1:
Input:
n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
src = 0, dst = 2, k = 1
Output: 200
Explanation:
The graph looks like this:
The cheapest price from city 0 to city 2 with at most 1 stop costs 200, as marked red in the picture.Example 2:
Input:
n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
src = 0, dst = 2, k = 0
Output: 500
Explanation:
The graph looks like this:
The cheapest price from city 0 to city 2 with at most 0 stop costs 500, as marked blue in the picture.Note:
The number of nodes
nwill be in range[1, 100], with nodes labeled from0ton - 1.The size of
flightswill be in range[0, n * (n - 1) / 2].The format of each flight will be
(src, dst, price).The price of each flight will be in the range
[1, 10000].kis in the range of[0, n - 1].There will not be any duplicated flights or self cycles.
// DFS
void helper(vector<vector<vector<int> > >& graph, vector<bool>& visited, int cur, int dst, int K, int out, int& res) {
if (cur == dst) {
res = out;
return;
}
if (K < 0) return;
for (auto& a : graph[cur]) {
if (visited[a[0]] || out + a[1] > res) continue; // pruning
visited[a[0]] = true;
helper(graph, visited, a[0], dst, K - 1, out + a[1], res);
visited[a[0]] = false;
}
}
int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int K) { // time: O(E + V); space: O(E + V)
int res = INT_MAX;
vector<vector<vector<int> > > graph(n); // adjacency list
vector<bool> visited(n, false);
visited[src] = true;
for (auto flight : flights) {
graph[flight[0]].push_back({flight[1], flight[2]});
}
helper(graph, visited, src, dst, K, 0, res);
return res == INT_MAX ? -1 : res;
}// BFS
int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int K) { // time: O(E + V); space: O(E + V)
int res = INT_MAX, cnt = 0;
vector<vector<vector<int> > > graph(n); // adjacency list
// Build graph
for (auto flight : flights) {
graph[flight[0]].push_back({flight[1], flight[2]});
}
queue<vector<int> > q({{src, 0}}); // queue used for BFS
while (!q.empty()) {
for (int i = q.size() - 1; i >= 0; --i) {
auto t = q.front(); q.pop();
if (t[0] == dst) res = min(res, t[1]);
for (auto& a : graph[t[0]]) {
if (t[1] + a[1] > res) continue;
q.push({a[0], t[1] + a[1]});
}
}
if (cnt++ > K) break;
}
return res == INT_MAX ? -1 : res;
}// Bellman Ford Algorithm + DP
int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int K) { // time: (K * n^2); space: O(K * n)
vector<vector<int> > dp(K + 2, vector<int>(n, 1e9));
dp[0][src] = 0;
for (int i = 1; i <= K + 1; ++i) {
dp[i][src] = 0;
for (auto& flight : flights) {
dp[i][flight[1]] = min(dp[i][flight[1]], dp[i - 1][flight[0]] + flight[2]); // relaxation
}
}
return (dp[K + 1][dst] >= 1e9) ? -1 : dp[K + 1][dst];
}// Bellman Ford Algorithm + space-optimized DP
int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int K) { // time: (K * n^2); space: O(n)
vector<int> dp(n, 1e9);
dp[src] = 0;
for (int i = 0; i < K + 1; ++i) {
vector<int> t = dp;
for (auto& flight : flights) {
t[flight[1]] = min(t[flight[1]], dp[flight[0]] + flight[2]);
}
dp = t;
}
return dp[dst] >= 1e9 ? -1 : dp[dst];
}Last updated
Was this helpful?