348. Design Tic-Tac-Toe
Design a Tic-tac-toe game that is played between two players on a n x n grid.
You may assume the following rules:
A move is guaranteed to be valid and is placed on an empty block.
Once a winning condition is reached, no more moves is allowed.
A player who succeeds in placing n of their marks in a horizontal, vertical, or diagonal row wins the game.
Example:
Given n = 3, assume that player 1 is "X" and player 2 is "O" in the board.
TicTacToe toe = new TicTacToe(3);
toe.move(0, 0, 1); -> Returns 0 (no one wins)
|X| | |
| | | | // Player 1 makes a move at (0, 0).
| | | |
toe.move(0, 2, 2); -> Returns 0 (no one wins)
|X| |O|
| | | | // Player 2 makes a move at (0, 2).
| | | |
toe.move(2, 2, 1); -> Returns 0 (no one wins)
|X| |O|
| | | | // Player 1 makes a move at (2, 2).
| | |X|
toe.move(1, 1, 2); -> Returns 0 (no one wins)
|X| |O|
| |O| | // Player 2 makes a move at (1, 1).
| | |X|
toe.move(2, 0, 1); -> Returns 0 (no one wins)
|X| |O|
| |O| | // Player 1 makes a move at (2, 0).
|X| |X|
toe.move(1, 0, 2); -> Returns 0 (no one wins)
|X| |O|
|O|O| | // Player 2 makes a move at (1, 0).
|X| |X|
toe.move(2, 1, 1); -> Returns 1 (player 1 wins)
|X| |O|
|O|O| | // Player 1 makes a move at (2, 1).
|X|X|X|
Follow up:
Could you do better than O(n2) per move()
operation?
class TicTacToe {
public:
/** Initialize your data structure here. */
TicTacToe(int n) {
board.resize(n, vector<int>(n, 0));
}
/** Player {player} makes a move at ({row}, {col}).
@param row The row of the board.
@param col The column of the board.
@param player The player, can be either 1 or 2.
@return The current winning condition, can be either:
0: No one wins.
1: Player 1 wins.
2: Player 2 wins. */
int move(int row, int col, int player) { // time: O(n)
board[row][col] = player;
int i = 0, j = 0, n = board.size();
// Check row
for (j = 1; j < n; ++j) {
if (board[row][j] != board[row][j - 1]) break;
}
if (j == n) return player;
// Check column
for (i = 1; i < n; ++i) {
if (board[i][col] != board[i - 1][col]) break;
}
if (i == n) return player;
// Check diagonal
if (row == col) {
for (i = 1; i < n; ++i) {
if (board[i][i] != board[i - 1][i - 1]) break;
}
if (i == n) return player;
}
// Check anti-diagonal
if (row + col == n - 1) {
for (i = 1; i < n; ++i) {
if (board[n - 1 - i][i] != board[n - i][i - 1]) break;
}
if (i == n) return player;
}
return 0; // no one wins
}
private:
vector<vector<int> > board;
};
class TicTacToe {
public:
/** Initialize your data structure here. */
TicTacToe(int n) : rows(n), cols(n), diag(0), anti_diag(0), N(n) {
}
/** Player {player} makes a move at ({row}, {col}).
@param row The row of the board.
@param col The column of the board.
@param player The player, can be either 1 or 2.
@return The current winning condition, can be either:
0: No one wins.
1: Player 1 wins.
2: Player 2 wins. */
int move(int row, int col, int player) {
int add = (player == 1 ? 1 : -1);
rows[row] += add;
cols[col] += add;
diag += (row == col) ? add : 0;
anti_diag += (row + col == N - 1) ? add : 0;
if (abs(rows[row]) == N || abs(cols[col]) == N || abs(diag) == N || abs(anti_diag) == N) return player;
else return 0;
}
private:
vector<int> rows, cols;
int diag, anti_diag, N;
};
Last updated
Was this helpful?