Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great"
:
great
/ \
gr eat
/ \ / \
g r e at
/ \
a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr"
and swap its two children, it produces a scrambled string "rgeat"
.
rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t
We say that "rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes "eat"
and "at"
, it produces a scrambled string "rgtae"
.
rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a
We say that "rgtae"
is a scrambled string of "great"
.
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
Example 1:
Input: s1 = "great", s2 = "rgeat"
Output: true
Example 2:
Input: s1 = "abcde", s2 = "caebd"
Output: false
// Brute Force Recursion
bool isScramble(string s1, string s2) { // time: O(5^n); space: O(n)
if (s1 == s2) return true;
int len = s1.length();
vector<int> count(26);
// characters check
for (int i = 0; i < len; ++i) {
++count[s1[i] - 'a'];
--count[s2[i] - 'a'];
}
for (int cnt : count) {
if (cnt != 0) return false;
}
for (int i = 1; i < len; ++i) {
if (isScramble(s1.substr(0, i), s2.substr(0, i)) && isScramble(s1.substr(i), s2.substr(i))) return true;
if (isScramble(s1.substr(0, i), s2.substr(len - i)) && isScramble(s1.substr(i), s2.substr(0, len - i))) return true;
}
return false;
}
// Recursion with Memoization to avoid duplicate calculation
bool helper(const string& s1, const string& s2, unordered_map<string, bool>& memo) {
bool res = false;
int len = s1.length();
if(len == 0) return true;
if (memo.count(s1 + s2)) return memo[s1 + s2];
if (s1 == s2) res = true;
else {
for (int i = 1; i < len; ++i) {
res = res ||
helper(s1.substr(0, i), s2.substr(0, i), memo) && helper(s1.substr(i), s2.substr(i), memo) ||
helper(s1.substr(0, i), s2.substr(len - i), memo) && helper(s1.substr(i), s2.substr(0, len - i), memo);
}
}
return memo[s1 + s2] = res;
}
bool isScramble(string s1, string s2) {
unordered_map<string, bool> memo;
return helper(s1, s2, memo);
}
// Dynamic Programming
bool isScramble(string s1, string s2) { // time: O(n^4); space: O(n^3)
int len = s1.length();
if (len == 0) return true;
if (len == 1) return s1 == s2;
vector<vector<vector<bool> > > dp(len + 1, vector<vector<bool> >(len, vector<bool>(len, false) ) );
for (int i = 0; i < len; ++i) {
for (int j = 0; j < len; ++j) {
dp[1][i][j] = s1[i] == s2[j];
}
}
for (int l = 2; l <= len; ++l) {
for (int i = 0; i <= len - l; ++i) {
for (int j = 0; j <= len - l; ++j) {
for (int k = 1; k < l && !dp[l][i][j]; ++k) {
// dp[l][i][j] = dp[l][i][j] || (dp[k][i][j] && dp[l - k][i + k][j + k]);
// dp[l][i][j] = dp[l][i][j] || (dp[k][i + l - k][j] && dp[l - k][i][j + k]);
if ((dp[k][i][j] && dp[l - k][i + k][j + k]) || (dp[k][i + l - k][j] && dp[l - k][i][j + k]))
dp[l][i][j] = true;
}
}
}
}
return dp[len][0][0];
}