Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
(i.e., [0,1,2,4,5,6,7]
might become [4,5,6,7,0,1,2]
).
You are given a target value to search. If found in the array return its index, otherwise return -1
.
You may assume no duplicate exists in the array.
Your algorithm's runtime complexity must be in the order of O(log n).
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
// Binary Search
int search(vector<int>& nums, int target) { // time: O(logn); space: O(1)
int left = 0, right = nums.size() - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) return mid;
if (nums[left] <= nums[mid]) { // [left...mid] is sorted
if (nums[left] <= target && target < nums[mid]) {
right = mid - 1;
} else {
left = mid + 1; // the equal case is handled beforehand
}
} else { // [mid...right] is sorted
if (nums[mid] < target && target <= nums[right]) {
left = mid + 1;
} else {
right = mid - 1;
}
}
}
return -1;
}
class Solution:
def search(self, nums: List[int], target: int) -> int:
left = 0
right = len(nums) - 1
while left <= right:
mid = left + (right - left) // 2
if nums[mid] == target:
return mid;
if nums[left] <= nums[mid]:
if nums[left] <= target and target < nums[mid]:
right = mid - 1
else:
left = mid + 1
else:
if nums[mid] < target and target <= nums[right]:
left = mid + 1
else:
right = mid - 1
return -1