Given a list of non-negative numbers and a target integer k, write a function to check if the array has a continuous subarray of size at least 2 that sums up to the multiple of k, that is, sums up to n*k where n is also an integer.
Example 1:
Input: [23, 2, 4, 6, 7], k=6
Output: True
Explanation: Because [2, 4] is a continuous subarray of size 2 and sums up to 6.
Example 2:
Input: [23, 2, 6, 4, 7], k=6
Output: True
Explanation: Because [23, 2, 6, 4, 7] is an continuous subarray of size 5 and sums up to 42.
Note:
The length of the array won't exceed 10,000.
You may assume the sum of all the numbers is in the range of a signed 32-bit integer.
// Brute Force
bool checkSubarraySum(vector<int>& nums, int k) { // time: O(n^2); space: O(1)
if (nums.empty()) return false;
int n = nums.size();
for (int i = 0; i < n; ++i) {
int sum = nums[i];
for (int j = i + 1; j < n; ++j) {
sum += nums[j];
if (sum == k || k != 0 && sum % k == 0) return true;
}
}
return false;
}
// Hashmap
bool checkSubarraySum(vector<int>& nums, int k) { // time: O(n); space: O(k)
if (nums.empty()) return false;
unordered_map<int, int> m; // <remainder, position index>
m[0] = -1; // initialize
int sum = 0;
for (int i = 0; i < nums.size(); ++i) {
sum += nums[i];
sum = (k == 0) ? sum : sum % k;
if (m.count(sum)) {
if (i - m[sum] > 1) return true;
} else m[sum] = i;
}
return false;
}
// Hashset
bool checkSubarraySum(vector<int>& nums, int k) { // time: O(n); space: (k)
if (nums.empty()) return false;
unordered_set<int> st; // stores result after modulus
int sum = 0, pre = 0; // insert pre to hashset in the next iteration to ensure the size of subarray >= 2
for (int i = 0; i < nums.size(); ++i) {
sum += nums[i];
sum = (k == 0) ? sum : sum % k;
if (st.count(sum)) return true;
st.insert(pre);
pre = sum;
}
return false;
}