421. Maximum XOR of Two Numbers in an Array
Given a non-empty array of numbers, a0, a1, a2, … , an-1, where 0 ≤ ai < 231.
Find the maximum result of ai XOR aj, where 0 ≤ i, j < n.
Could you do this in O(n) runtime?
Example:
Input: [3, 10, 5, 25, 2, 8]
Output: 28
Explanation: The maximum result is 5 ^ 25 = 28.
// Bit Manipulation
int findMaximumXOR(vector<int>& nums) { // time: O(n); space: O(n)
int max = 0, mask = 0;
unordered_set<int> st;
for (int i = 31; i >= 0; --i) {
mask |= (1 << i); // mask to help extract bits from left to right
st.clear();
for (int num : nums) {
st.insert(num & mask); // get prefix bits of each number
}
int max_candidate = max | (1 << i); // desire to get the larger candidate in current iteration
for (int prefix : st) {
if (st.count(prefix ^ max_candidate)) { // a ^ b = c => a ^ c = b
max = max_candidate;
break;
}
}
}
return max;
}
// Trie (Prefix Tree)
struct TrieNode {
int val;
TrieNode *left, *right; // left: 1, right: 0
TrieNode(int v) : val(v), left(nullptr), right(nullptr) {}
};
int findMaximumXOR(vector<int>& nums) { // time: O(n); space: O(n)
TrieNode* root = new TrieNode(0);
// Build Trie
TrieNode* cur = root;
for (int num : nums) {
for (int i = 31; i >= 0; --i) {
int tmp = num & (1 << i);
if (tmp == 0) {
if (!cur->right) {
cur->right = new TrieNode(0);
}
cur = cur->right;
} else {
if (!cur->left) {
cur->left = new TrieNode(1);
}
cur = cur->left;
}
}
cur = root; // reset
}
// Find xor max
int res = 0;
for (int num : nums) {
int curMax = 0;
for (int i = 31; i >= 0; --i) {
int tmp = num & (1 << i);
if (cur->left && cur->right) {
if (tmp == 0) {
cur = cur->left;
} else {
cur = cur->right;
}
} else {
cur = cur->left ? cur->left : cur->right;
}
curMax += tmp ^ (cur->val << i);
}
cur = root; // reset
res = max(res, curMax); // comparison b/w res & curMax
}
return res;
}
Last updated
Was this helpful?