764. Largest Plus Sign
In a 2D grid from (0, 0) to (N-1, N-1), every cell contains a 1, except those cells in the given list mines which are 0. What is the largest axis-aligned plus sign of 1s contained in the grid? Return the order of the plus sign. If there is none, return 0.
An "axis-aligned plus sign of 1s of order k" has some center grid[x][y] = 1 along with 4 arms of length k-1 going up, down, left, and right, and made of 1s. This is demonstrated in the diagrams below. Note that there could be 0s or 1s beyond the arms of the plus sign, only the relevant area of the plus sign is checked for 1s.
Examples of Axis-Aligned Plus Signs of Order k:
Order 1:
000
010
000
Order 2:
00000
00100
01110
00100
00000
Order 3:
0000000
0001000
0001000
0111110
0001000
0001000
0000000Example 1:
Input: N = 5, mines = [[4, 2]]
Output: 2
Explanation:
11111
11111
11111
11111
11011
In the above grid, the largest plus sign can only be order 2. One of them is marked in bold.Example 2:
Input: N = 2, mines = []
Output: 1
Explanation:
There is no plus sign of order 2, but there is of order 1.Example 3:
Input: N = 1, mines = [[0, 0]]
Output: 0
Explanation:
There is no plus sign, so return 0.Note:
Nwill be an integer in the range[1, 500].mineswill have length at most5000.mines[i]will be length 2 and consist of integers in the range[0, N-1].(Additionally, programs submitted in C, C++, or C# will be judged with a slightly smaller time limit.)
// Brute Force
bool canExpand(vector<vector<int> >& matrix, int N, int x, int y, int k) {
if (x - k < 0 || y - k < 0 || x + k >= N || y + k >= N) return false;
return matrix[x + k][y] && matrix[x - k][y] && matrix[x][y + k] && matrix[x][y - k];
}
int orderOfLargestPlusSign(int N, vector<vector<int>>& mines) { // time: O(N^3); space: O(N^2)
int res = 0;
vector<vector<int> > matrix(N, vector<int>(N, 1));
for (auto& mine : mines) matrix[mine[0]][mine[1]] = 0;
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
int k = 0;
while (canExpand(matrix, N, i, j, k)) ++k;
res = max(res, k);
}
}
return res;
}// Dynamic programming
int orderOfLargestPlusSign(int N, vector<vector<int>>& mines) { // time: O(N^2); space: O(N^2)
int res = 0, cnt = 0;
vector<vector<int> > dp(N, vector<int>(N, 0));
unordered_set<int> s;
for (auto& mine : mines) s.insert(mine[0] * N + mine[1]);
for (int j = 0; j < N; ++j) {
cnt = 0;
// Up
for (int i = 0; i < N; ++i) {
cnt = s.count(i * N + j) ? 0 : cnt + 1;
dp[i][j] = cnt;
}
cnt = 0;
// Down
for (int i = N - 1; i >= 0; --i) {
cnt = s.count(i * N + j) ? 0 : cnt + 1;
dp[i][j] = min(dp[i][j], cnt);
}
}
for (int i = 0; i < N; ++i) {
cnt = 0;
// Left
for (int j = 0; j < N; ++j) {
cnt = s.count(i * N + j) ? 0 : cnt + 1;
dp[i][j] = min(dp[i][j], cnt);
}
cnt = 0;
// Right
for (int j = N - 1; j >= 0; --j) {
cnt = s.count(i * N + j) ? 0 : cnt + 1;
dp[i][j] = min(dp[i][j], cnt);
}
}
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
res = max(res, dp[i][j]);
}
}
return res;
}// Dynamic Programming
int orderOfLargestPlusSign(int N, vector<vector<int>>& mines) { // time: O(N^2); space: O(N^2)
int res = 0, cnt = 0;
vector<vector<int> > dp(N, vector<int>(N, 1));
for (auto& mine : mines) dp[mine[0]][mine[1]] = 0;
for (int j = 0; j < N; ++j) {
cnt = 0;
// Up
for (int i = 0; i < N; ++i) {
if (dp[i][j]) cnt += 1;
else cnt = 0;
dp[i][j] = cnt;
}
cnt = 0;
// Down
for (int i = N - 1; i >= 0; --i) {
if (dp[i][j]) cnt += 1;
else cnt = 0;
dp[i][j] = min(dp[i][j], cnt);
}
}
for (int i = 0; i < N; ++i) {
cnt = 0;
// Left
for (int j = 0; j < N; ++j) {
if (dp[i][j]) cnt += 1;
else cnt = 0;
dp[i][j] = min(dp[i][j], cnt);
}
cnt = 0;
// Right
for (int j = N - 1; j >= 0; --j) {
if (dp[i][j]) cnt += 1;
else cnt = 0;
dp[i][j] = min(dp[i][j], cnt);
}
}
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
res = max(res, dp[i][j]);
}
}
return res;
}// Dynamic programming
int orderOfLargestPlusSign(int N, vector<vector<int>>& mines) { // time: O(N^2); space: O(N^2)
int res = 0;
vector<vector<int> > dp(N, vector<int>(N, N));
for (auto& mine : mines) dp[mine[0]][mine[1]] = 0;
for (int i = 0; i < N; ++i) {
int l = 0, r = 0, u = 0, d = 0;
for (int j = 0, k = N - 1; j < N && k >= 0; ++j, --k) {
dp[i][j] = min(dp[i][j], l = (dp[i][j]) ? l + 1 : 0);
dp[i][k] = min(dp[i][k], r = (dp[i][k]) ? r + 1 : 0);
dp[j][i] = min(dp[j][i], u = (dp[j][i]) ? u + 1 : 0);
dp[k][i] = min(dp[k][i], d = (dp[k][i]) ? d + 1 : 0);
}
}
for (int l = 0; l < N * N; ++l) {
res = max(res, dp[l / N][l % N]);
}
return res;
}Last updated
Was this helpful?