516. Longest Palindromic Subsequence

Given a string s, find the longest palindromic subsequence's length in s. You may assume that the maximum length of s is 1000.

Example 1: Input:

"bbbab"

Output:

4

One possible longest palindromic subsequence is "bbbb".

Example 2: Input:

"cbbd"

Output:

2

One possible longest palindromic subsequence is "bb".

dp[i][j]代表string[i...j]中最長的palindromic subsequence長度。先初始化dp[i][i]為1,如果s[i]和s[j]字元相同,最長的palindromic subsequence長度加2,如果字元不同,則從s[i+1...j]和s[i...j-1]之中去找longest palindromic subsequence。 dp state transition: dp[i][j] = dp[i + 1][j - 1] + 2 if s[i] == s[j] Otherwise, dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])

// Bottom-Up Dynamic Programming
int longestPalindromeSubseq(string s) { // time: O(n^2); space: O(n^2)
    int n = s.size();
    vector<vector<int> > dp(n, vector<int>(n, 0));
    for (int j = 0; j < n; ++j) {
        dp[j][j] = 1;
        for (int i = j - 1; i >= 0; --i) {
            if (s[i] == s[j]) {
                dp[i][j] = (j - i >= 2 ? dp[i + 1][j - 1] : 0) + 2;
            } else {
                dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
            }
        }
    }
    return dp[0][n - 1];
}

Top-down dp利用memoization紀錄已經計算過的組合避免大量重複運算。memo 2D vector存的值是-1代表還沒計算過該種組合,概念跟bottom-up dp類似。

這題和5. Longest Palindromic Substring還有647. Palindromic Substrings有點類似。這題是subsequence,那兩題是substring。

5. Longest Palindromic Substring647. Palindromic Substrings

Last updated

Was this helpful?