Two strings X and Y are similar if we can swap two letters (in different positions) of X, so that it equals Y.
For example, "tars" and "rats" are similar (swapping at positions 0 and 2), and "rats" and "arts" are similar, but "star" is not similar to "tars", "rats", or "arts".
Together, these form two connected groups by similarity: {"tars", "rats", "arts"} and {"star"}. Notice that "tars" and "arts" are in the same group even though they are not similar. Formally, each group is such that a word is in the group if and only if it is similar to at least one other word in the group.
We are given a list A of strings. Every string in A is an anagram of every other string in A. How many groups are there?
Example 1:
Input: A = ["tars","rats","arts","star"]
Output: 2
Constraints:
1 <= A.length <= 2000
1 <= A[i].length <= 1000
A.length * A[i].length <= 20000
All words in A consist of lowercase letters only.
All words in A have the same length and are anagrams of each other.
The judging time limit has been increased for this question.
bool isSimilar(const string& s1, const string& s2) {
for (int i = 0, cnt = 0; i < s1.length(); ++i) {
if (s1[i] == s2[i]) continue;
if (++cnt > 2) return false;
}
return true;
}
// Find
int getRoot(vector<int>& roots, int i) {
return roots[i] == i ? i : roots[i] = getRoot(roots, roots[i]);
}
// Union Find Solution
int numSimilarGroups(vector<string>& A) {
int n = A.size(), res = n;
vector<int> roots(n);
for (int i = 0; i < n; ++i) roots[i] = i;
for (int i = 1; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (!isSimilar(A[i], A[j])) continue;
int r_i = getRoot(roots, i), r_j = getRoot(roots, j);
if (r_i == r_j) continue;
// Union
roots[r_j] = r_i;
--res;
}
}
return res;
}
// DFS
bool isSimilar(const string& s1, const string& s2) {
for (int i = 0, cnt = 0; i < s1.length(); ++i) {
if (s1[i] == s2[i]) continue;
if (++cnt > 2) return false;
}
return true;
}
void helper(const vector<string>& A, unordered_set<string>& visited, const string& str) {
if (visited.count(str)) return;
visited.insert(str);
for (const string& word : A) {
if (isSimilar(str, word)) {
helper(A, visited, word);
}
}
}
int numSimilarGroups(vector<string>& A) { // time: O(n^2); space: O(n)
int n = A.size(), res = 0;
unordered_set<string> visited;
for (const string& s : A) {
if (visited.count(s)) continue;
++res;
helper(A, visited, s);
}
return res;
}
// BFS
int numSimilarGroups(vector<string>& A) { // time: O(n^2); space: O(n)
int n = A.size(), res = 0;
vector<bool> visited(n, false);
queue<string> q;
for (int i = 0; i < n; ++i) {
if (visited[i]) continue;
visited[i] = true;
++res;
q.push(A[i]);
while (!q.empty()) {
string t = q.front(); q.pop();
for (int j = 0; j < n; ++j) {
if (visited[j]) continue;
int diff = 0;
for (int k = 0; k < A[j].length(); ++k) {
if (t[k] == A[j][k]) continue;
if (++diff > 2) break;
}
if (diff == 0 || diff == 2) {
if (diff == 2) q.push(A[j]);
visited[j] = true;
}
}
}
}
return res;
}