673. Number of Longest Increasing Subsequence
Given an unsorted array of integers, find the number of longest increasing subsequence.
Example 1:
Input: [1,3,5,4,7]
Output: 2
Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].
Example 2:
Input: [2,2,2,2,2]
Output: 5
Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.
Note: Length of the given array will be not exceed 2000 and the answer is guaranteed to be fit in 32-bit signed int.
int findNumberOfLIS(vector<int>& nums) { // time: O(n^2); space: O(n)
int n = nums.size(), res = 0, maxLen = 0; // initialize to 0 for empty input
vector<int> len(n, 1), cnt(n, 1);
// len[i]: the length of LIS ending with nums[i]
// cnt[i]: the number of LIS with len[i]
// DP relation: len[i] = max({len[j]}, 0 <= j < i) + 1
for (int i = 0; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (nums[i] > nums[j]) {
if (len[i] == len[j] + 1)
cnt[i] += cnt[j];
else if (len[i] < len[j] + 1) {
len[i] = len[j] + 1;
cnt[i] = cnt[j];
}
}
}
if (maxLen == len[i]) res += cnt[i];
else if (maxLen < len[i]) {
maxLen = len[i];
res = cnt[i];
}
}
return res;
}
Last updated
Was this helpful?