209. Minimum Size Subarray Sum
Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
Example:
Input: s = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: the subarray [4,3] has the minimal length under the problem constraint.Follow up:If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
// Sliding Window Method
int minSubArrayLen(int s, vector<int>& nums) { // time: O(n); space: O(1)
int n = nums.size(), start = 0, sum = 0, minLen = numeric_limits<int>::max();
for (int i = 0; i < n; ++i) {
sum += nums[i];
while (sum >= s) {
minLen = min(minLen, i - start + 1);
sum -= nums[start++];
}
}
return minLen == numeric_limits<int>::max() ? 0 : minLen;
}// Sliding window
int minSubArrayLen(int s, vector<int>& nums) { // time: O(n); space: O(1)
int n = nums.size(), begin = 0, end = 0, sum = 0, res = numeric_limits<int>::max();
while (end < n) {
sum += nums[end++];
while (sum >= s) {
res = min(res, end - begin);
sum -= nums[begin++];
}
}
return res == numeric_limits<int>::max() ? 0 : res;
}Last updated
Was this helpful?